A Non-messing-up Phenomenon for Posets

نویسنده

  • BRIDGET EILEEN TENNER
چکیده

We classify finite posets with a particular sorting property, generalizing a result for rectangular arrays. Each poset is covered by two sets of disjoint saturated chains such that, for any original labeling, after sorting the labels along both sets of chains, the labels of the chains in the first set remain sorted. We also characterize posets with more restrictive sorting properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Posets with the Non-messing-up Property for Two Sets of Chains

The so-called Non-Messing-Up Theorem is a well known sorting result for rectangular arrays of real numbers. In [4], Donald E. Knuth attributes the result to Hermann Boerner, who mentions it in a footnote in Chapter V, §5 of [1]. Later, David Gale and Richard M. Karp include the fact as an example in [3], where they prove a more general result about order preservation in sorting procedures. The ...

متن کامل

Sort-Invariant Non-Messing-Up

A poset has the non-messing-up property if it has two covering sets of disjoint saturated chains so that for any labeling of the poset, sorting the labels along one set of chains and then sorting the labels along the other set yields a linear extension of the poset. The linear extension yielded by thus twice sorting a labeled nonmessing-up poset may be independent of which sort was performed fi...

متن کامل

COGENERATOR AND SUBDIRECTLY IRREDUCIBLE IN THE CATEGORY OF S-POSETS

In this paper we study the notions of cogenerator and subdirectlyirreducible in the category of S-poset. First we give somenecessary and sufficient conditions for a cogenerator $S$-posets.Then we see that under some conditions, regular injectivityimplies generator and cogenerator. Recalling Birkhoff'sRepresentation Theorem for algebra, we study subdirectlyirreducible S-posets and give this theo...

متن کامل

Properties of products for flatness in the category of $S$-posets

This paper is devoted to the study of products of classes of right $S$-posets possessing one of the flatness properties and preservation of such properties under products. Specifically, we characterize a pomonoid $S$ over which its nonempty products as right $S$-posets satisfy some known flatness properties. Generalizing this results, we investigate products of right $S$-posets satisfying Condi...

متن کامل

REES SHORT EXACT SEQUENCES OF S-POSETS

In this paper the notion of Rees short exact sequence for S-posets is introduced, and we investigate the conditions for which these sequences are left or right split. Unlike the case for S-acts, being right split does not imply left split. Furthermore, we present equivalent conditions of a right S-poset P for the functor Hom(P;-) to be exact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004